

ENTEC

Energy Transition Expertise Centre

Digitalisation of Energy Flexibility

Ole Rolser and Diego Hernandez Diaz

Flexibility requirement in the EU

- Net GHG emissions - Electricity share in EU energy consumption

2020 2030/2050

EU power system is evolving rapidly to require more flexibility

Meeting climate neutrality by 2050 will require **increased energy system flexibility**, as a result of increasing share of renewables (RES)

1.5 degree Pathway: Net CO2 equivalent emissions (CO₂ eq., GT) and **Electricity share in EU energy consumption** (%)

EC Green Deal has set ambitious targets which specifically drive flexibility needs

The EC's Green Deal to achieve climate neutrality by 2050 sets ambitious targets in key sectors for energy flexibility control

Flexibility need can be addressed through digital use cases; part of larger EC ecosystem

Energy storage and DSM flexibility provide opportunities for **optimization made possible through digitalization** however not all solutions will be digital

The overarching Green Deal creates natural links to **DG Mobility and Transport**, **DG Communications** and **EC policy departments**¹

Page 2

1. CEF: program on creating high performance interconnected networks in Transport, Energy and Digital Services. SmartBuilt4EU: Smart Building Innovation Platform

© EnTEC Energy Transition Expertise Centre Source: McKinsey Global Energy Perspective, EC

Flexibility solutions comparison

Min TCOO¹, €/kW Max TCOO, €/kW

Min Revenue, €/kW Max Revenue, €/kW

Project focus

		Time to deploy	System cost and revenue opportunity 2030	Environmental impact	
Flexible generation Storage Demand management	Digital flexibility solutions	Ramp up to 200+ GW projected possible by 2030	1 60 8 68	Limited impact, ranging from software only to minor electric or mechanical parts (e.g., boiler, hot water buffer tank)	 Based on high level assessment, selected digital power flexibility solutions can be advantageous or at least on par with non-digital flexibility options A high ramp up rate to deployment at scale fast development cycles in digital technology While highly uncertain, cost and revenue estimates for selected business cases show strong margins before fees, taxes and other effects
Freibie generation Bernard Bernard Tennard	Gas power plants	Likely no significant limitation to build out given established processes etc.	54 57	~1 GWh of natural gas burned per 0.6 GWh of flexible generation, generating 345 tons of CO ₂	
			51 71		
Pondar generation Storage Donand management	Electricity storage ³	~22 GW of battery projects estimated by 2030	52 34 64	Requires 4.8 tons of material, thereof 0.11 tons of lithium, per GWh of capacity	
Figure allow prime allow Demand management	Hydrogen electrolyzer ²	40 GW of capacity announced by EU as an objective for 2030 – competition with industry, mobility applications	15 74	Requires precious metals (platinum for electrolyzers)	

Indicative comparison neglecting additional factors such as availability, flexibility needs addressed (e.g. ancillary services)

Page 3

2. TCOO and revenue based on electrolyzer CAPEX for 2030 and projected value of hydrogen. Excludes storage and e.g. fuel cells for grid services

European Commission

Project Overview

Selected flexibility solutions

			Use cases	Business cases
On-site building automation enables	VPP platforms enable RES to participate in the flexibility market, and grid	Energy communities help reduce power	Grid optimisation	Distributed Energy Resource Mgt Systems (DERMS)
holistic management of commercial building energy consumption	operators to solve e.g. congestion issues Smart Char	and gas network utilization and can offer attractive heating/cooling options	Virtual power plant (VPP) platforms	VPPs for intraday flexibility VPPs for ancillary services VPPs for internal balancing
	charging of in line with s or price sign enabling log	electric vehicles self-consumption nals, as well as cal grid stabilizing	Energy communities	Energy communities & P2P District heating and cooling
Vehicle to grid enables usage	measures fo	or DSO demand side management at industrial sites, e.g. via	On-site building optimisation	Building Energy Management Systems
of EV batteries for flexibility measures (with remuneration for the owner)	Home automation residential energy of numps) and supply	helps manage lemand (e.g. heat (ctorage installation	Industrial DSR	Industrial load control: hybrid heating
	according to self-co flexibility goals	onsumption	Home automation	Residential heat pumps HEMS and home batteries
		Grid optimization e.g. via DERMS/ADMS systems help DSOs to keep their grids stable	EV smart charging	EV: responsive charging EV: self-consumption optimisation
			Vehicle to grid	EV: responsive (dis)charging EV: congestion and ancillary services

9 key take aways from this project

Task 1.1 1 Digital flexibility business cases vary vastly in regards to maturity, size and feasibility

2 Most business cases provide short intraday flexibility, only one selected business case is able to provide flexibility across a timespan larger than 24 hours

- **Task 1.2** 3 Business cases vary significantly on impact (e.g., amount of flexibility providable, risk profile) and feasibility (e.g. indicative business case viability, technical development status)
 - 4 The analyzed business cases could if reaching their full potential **cover a large percentage or even all identified flexibility requirement** in ancillary services, congestion management and wholesale/spot market
 - 5 Full build out of the analyzed business cases would require significant resource investment (~40 bn €) and large scale implementation in their respective asset base (e.g. industrial complexes, district heating, battery electric vehicles)
- **Task 2.1** 6 Real time and safe data exchange is an important prerequisite for most business cases. Several initiatives are trying to facilitate this, e.g. gaia-x but significant development is still needed to meet needed standards for many business cases
- Task 2.2
 Regulatory framework should recognize value of flexibility for renewable integration and promote flexibility readiness. This should focus on reduction of transaction costs for small scale participants and providing cost-reflective tariffs and incentives.
 - 8 The features of flexibility resources need to be considered in the **design of market conditions** by **rethinking market rules according to actual market needs**
- **Task 3** 9 **Positive examples already exist** as first companies start to offer needed services. Learning from their experiences offers further insights into how to support growths in the space by proactively shaping the industry

Page 6

Business cases potential impact - preliminary

2030 2050 Resource competition

Estimated flexibility potential of business cases (2030 and 2050), $\mathsf{GW}_{\mathsf{peak}}$

Wholesale /spot	EV: responsive charging & discharging	241	
тагкет	District heating and cooling	170	
	VPPs for intraday flexibility		164
	VPPs for internal balancing	Lim. flexibility effect	80
	Industrial load control: hybrid heating		74
	HEMS and home batteries		55
	Energy sharing (+ P2P trading)		46
	BEMS (commercial buildings)		38
	EV: responsive charging		28
	EV: self-consumption optimization		17
	Residential heat pumps		10
	Resource competition		-155
Ancillary services	EV: congestion and ancillary services		154
	VPPs for ancillary services		16
	Resource competition		-110
Congestion	Industrial load control: hybrid heating		1
management	HEMS and home batteries		1
	Resource competition		0
Total		230 600	831

High level roles of flexibility options

Largest potential for **wholesale/ spot market** application:

- Battery electric vehicles (EV)
- VPPs
- District heating and cooling

Largest potential for ancillary services:

- Battery electric vehicles (EV)
- VPPs

Largest potential for congestion management:

- Industrial load control
- BEMS and HEMS

... due to their spatial distribution in the TSO/DSO grids

© EnTEC Energy Transition Expertise Centre

Page 7

Business cases are mapped against a single or multiple flexibility types, but always adding up to 100% of each cases capacity. While business cases may be able to participate in e.g. congestion management and spot market flexibility, it is not possible to participate in multiple markets with the same resource capacity at the same time.

Task 1.2Task 2.2Task 3

Task 1.1

Task 2.1

Example: Use cases for possible EU27 2050 scenario

Task 1.1 Task 1.2 Task 2.1 Task 2.1 Task 2.2

Scenario description: Meeting EU flexibility demand by 2050

A merit order of flexibility has been constructed for each of the flexibility types

Business cases with decreasing margin were selected until the three flexibility targets for 2050 demand were met or no additional capacity at positive margin is available

Wholesale/intraday spot market: gap of ~45 GW of flexibility to be filled by other, non-digital flexibility sources;

Ancillary services: gap of ~45 GW, with V2G for ancillary services currently projected not profitable

Congestion management: small demand (1 GW) met by spatially distributed flexibility (industrial hybrid heating, BEMS)

This illustrative example makes at least the following simplifications:

- Margin estimate does not consider fees, taxes and other effects
- Differences in upward/downward demand are not considered
- Maximum shiftable duration of flexibility is not considered, and intraday and interday are not treated separately
- No spatial requirements for congestion management considered
- Non-digital flexibility solutions where not considered

Wholesale/spot market margin merit order¹, EUR/MWnyeear flexibility need

Ancillary services margin merit order¹, EUR/MW-year

Congestion management margin merit order¹, EUR/MW-year

 Capacity from directly competing business cases has been reduced to reflect limited resources e.g. BC 3.1 and BC 4.1 and BC 8.1 and BC 9.1. Most profitable cases have been prioritized for this, so that a higher capacity could be achieved when accepting lower margins

© EnTEC Energy Transition Expertise Centre

Page 8

What would it take to implement this scenario?

Values are exemplary, non-exhaustive and depend on which business cases prevail

Exemplary changes by 2050

When focusing on digital flexibility

~ 40 Bn EUR capital investment

...specifically targeting flexibility solutions assuming underlying infrastructure (e.g. BEV and dispatchable generation) in place

Page 9

Hybrid heating system upgrade at **3,000 industrial sites** (100% of suitable sites)

165 GW of dispatchable renewable energy sources accumulated in VPPs (~60% of all dispatchable RES¹)

 3,400 district heating networks (170 GW) participating in flexibility markets
 (50% of all DH networks)

~ 59 million BEVs
utilizing smart charging
and ~ 7 million BEVs
participating in V2G
activities
(~35% of estimated BEVs)

1. Assume 800MW/VPP, 350 VPPs by 2030

Common barriers to flexibility provision and potential options to consider

Task 1.1 Task 2.1 Task 1.2 Task 2.2

Task 3

Barriers	Plausible alternatives to explore
Need for incentives	Cost-reflective tariffs for small-scale flexibility resources, a requirement for incentive-based activation of flexibility resources
	Grid related incentives for flexibility usage
External control of	Facilitation of access to real-time data (data types, authorization guidance)
demand-side resources	Enable remote control of assets
Technical requirements of integration	Facilitate availability of cheap and interoperable metering & control technology
	Define technical requirements with flexibility resources in mind (smaller minimum bids, shorter gate closure times, shorter availability periods, comfort needs, production schedules
Market participation/	Facilitate pre-qualification for groups instead of individual applications (driving uptake of e.g. storage, heat pumps, electric boilers)
integration at scale	Open the system service markets to flexibility resources in addition to wholesale
	Make processes and information flows for the provision of flexibility easy to understand and accessible to small, non-expert parties

Factors that could affect digital businesses for policy makers

Task 1.1Task 2.1Task 1.2Task 2.2Task 3

Policy shapers can influence the development of new digital business models to enable digital business building in energy flexibility

XX Power companies within EU

XX Power companies outside EU

XX Companies from other sectors

	From	То	Examples from our research
Timing/pace	engaging with innovators reactively	assessing impact and risks early and continuously evaluating industry developments	Company A, B
Policy design	fitting new digital business models into existing regulatory frameworks	designing fit-for-purpose regulatory frameworks for digitally enabled business models	Company A, B, C, D, E
Enforcement / public support	managing enforcement through individual government agencies	leveraging "whole-of-government" approach and coordination	Company A, H, I
International cooperation	looking at local developments narrowly	learning from international markets and developments, and cooperating with international peers	Company B, C, D
	Timing/pace Policy design Enforcement / public support International cooperation	FromTiming/pace engaging with innovators reactivelyPolicy design fitting new digital business models into existing regulatory frameworksEnforcement / public support managing enforcement through individual government agenciesInternational cooperation looking at local developments narrowly	FromToTiming/pace engaging with innovators reactively assessing impact and risks early and continuously evaluating industry developmentsPolicy design fitting new digital business models into existing regulatory frameworks designing fit-for-purpose regulatory frameworks for digitally enabled business modelsEnforcement yublic support managing enforcement through individual government agencies leveraging "whole-of-government" approach and coordinationInternational cooperation looking at local developments narrowly learning from international markets and developments, and cooperating with international peers

Consortium

