The Benefits of Innovative Power Grid Technologies

Results from an unpublished study for currENT

Under embargo

cons<mark>en</mark>tec

Main messages and conclusions

under embargo

.g0

Scope of the study

Background	 Long-distance transmission of electrical energy has increased significantly over the past decades will increase further Driven by electrifying all energy sectors Rapidly growing share of renewable energy power generation, often installed at far from load centers Grid reinforcement is needed and planned, but has fallen behind due to public resistance Innovative technologies available to help ensure costefficient grid reinforcement
Technologies	 Dynamic Line Rating (DLR): TRL 9¹ Modular Static Synchronous Series Compensator (M-SSSC):
considered	TRL 7-9 Superconductor DC system: TRL 5-6
Methodological approach	 Study focusses on savings in redispatch costs possible due to applying innovative grid technology in the target year 2030 Cost savings are calculated by comparing a reference scenario without the three technologies to 4 different technology scenarios 3 individual scenarios: DLR or M-SSSCs or Superconductors 1 combined scenario: all technologies applied
1) TRL: Technology readiness leve	el awarded by ENTSO-E technopedia
TRL 9 – System ready for f	ull scale deployment
TRL 8 – System incorporat	ed in commercial design
TRL 7 – Integrated pilot sy	stem demonstrated
TRL 6 – Prototype system	verified

cons<mark>en</mark>tec

Scenario for target year 2030 – assumptions

Market simulation

- Green-Deal approximated
- Gas-fired power plants more profitable than lignite and hard coal (EUR 80 per tonne CO₂)
- Cross-border trade intensifies
- Germany becomes net importer
- Flow-based market coupling in Core-Region → 70% MinRAM applied

 Load Flow and Redispatch Simulation

- Power grid modelling in whole continental Europe
- Fully integrated cross-border congestion management in France, Belgium, The Netherlands, Luxembourg, Germany and Austria
- All power grid reinforcement projects assumed to be on time (rather optimistic)

Except for one Hvor convectior within Garmany, for which a design with superconductors was explored

Quantitative Assessment of Innovative Technologies

 \rightarrow Main outcome of the study are savings in redispatch costs

 \rightarrow Further benefits of innovative technologies were considered qualitatively

cons<mark>en</mark>tec

Main Messages & Conclusions

Redispatch volume base case

- → Redispatching volume relatively low due to optimistic assumptions on grid expansion
- ightarrow Most of the redispatching located in Germany
- → Significant RES curtailment in DE (of which 80% is related to wind onshore)

25 Nov 2021 | 5

embargc

Main Messages & Conclusions

Modelling results

- In the considered scenario, Dynamic Line Rating and Smart Valve technology each reduce \rightarrow the volume of redispatch and costs by roughly 40%-50%
- Additional HVDC connection with Superconductor technology could reduce the redispatch \rightarrow costs by roughly 60% (or 30% compared to normal HVDC cable at same cost level)
- Combining the three technologies results in volume and costs savings of roughly 90% \rightarrow compared to the reference case, proving complementarity of approaches

25 Nov 2021 | 6

Main Messages & Conclusions

Significant impact	 Dynamic Line Rating, M-SSSC and Superconductors can each significantly reduce the volume of congestion and congestion management costs in highly loaded transmission systems, thus helping to integrate RES generation and limiting need for RES curtailment
Complementarity	 While each of the innovative technologies will help optimize the power network individually, our study shows in addition the complementary benefit of those technologies
Additional benefits possible	 Further benefits might include improved integration of markets, reduced price differences, faster employment of renewable generation, faster electrification of fossil fueled consumption and more emission cuts Explicit analysis has not been part of the present study
	- Efficiency and entimization using innovative technologies
No substitute for grid expansion	and the investments in reinforcement and expansion of networks, should be considered together to ensure a secure and cost-efficient green energy transition to society
	25 Nov 2021 7

Consentec GmbH Grüner Weg 1 52070 Aachen Deutschland

Tel. +49 241 93836-0 Fax +49 241 93836-15 info@consentec.de www.consentec.de

currENT c/o Ampacimon Rue de Wallonie 11 B-4460 Grâce-Hollogne House Belgium

Tel. +32 4 239 80 20

info@currenteurope.eu www.currenteurope.eu

under embargo