

Commission européenne, B-1049 Bruxelles / Europese Commissie, B-1049 Brussel - Belgium. Telephone: (32-2) 299 11 11.

Commission européenne, L-2920 Luxembourg. Telephone: (352) 43 01-1.

EUROPEAN COMMISSION
DIRECTORATE-GENERAL
HUMAN RESOURCES AND SECURITY
Directorate DS - Security
Informatics Security

Brussels, 04/07/2011
HR.DS5/GV/ac ARES (2011) 719444
SEC20.10.05/04 - Standards

European Commission

Information System Security Policy

C(2006) 3602

STANDARD ON SECURE SYSTEMS
DEVELOPMENT

ADOPTED BY MRS. IRENE SOUKA,

DIRECTOR-GENERAL OF DG HUMAN RESOURCES AND SECURITY, ON 04/07/2011

Version 0.4_04/05/2011

Standard on Secure Systems Development Page 2 of 32

TABLE OF CONTENTS

1. ADOPTION PROCEDURE .. 4

2. INTRODUCTION ... 4

3. OBJECTIVES ... 4

4. SCOPE ... 4

5. THREATS COVERED ... 5

6. TERMINOLOGY .. 5

7. BACKGROUND INFORMATION .. 6

8. SECURITY REQUIREMENTS OF INFORMATION SYSTEMS 8

8.1. General rules .. 8

8.1.1. Information systems security governance ... 8

8.1.2. Defining security requirements ... 9

8.2. Developed Systems ... 10

8.2.1. Guidance on applicability .. 10

8.2.2. Initiation phase .. 11

8.2.3. Development Phase ... 12

8.2.4. Deployment Phase ... 14

8.2.5. Operation Phase ... 14

8.2.6. Disposal Phase ... 15

8.3. Third party Products .. 15

9. CORRECT PROCESSING IN APPLICATIONS .. 16

9.1. Coding Standards... 16

9.2. Input Data Validation .. 17

9.3. Control of Internal Processing ... 17

9.4. Message Integrity .. 18

9.5. Output Data Validation.. 19

10. SECURE DEVELOPMENT ENVIRONMENT ... 19

10.1. System Test Data ... 20

10.2. Operational Software ... 21

11. SECURITY IN DEVELOPMENT AND SUPPORT PROCESSES 22

11.1. Change Control Procedures ... 22

11.1.1. General Rules .. 22

Standard on Secure Systems Development Page 3 of 32

11.1.2. Segregation of Duties .. 23

11.1.3. Protection of technical environments .. 23

11.1.4. Software Repository .. 24

11.1.5. Change Control Processes ... 24

11.1.6. Changes to Third Party Products ... 26

11.2. Code Review ... 27

11.3. Penetration Tests ... 28

12. OUTSOURCED SOFTWARE DEVELOPMENT ... 29

12.1. General Rules .. 29

13. ROLES AND RESPONSIBILITIES ... 30

14. REFERENCES .. 30

15. RELATED DOCUMENTS ... 31

16. ANNEX 1 – SUPPLEMENTARY INFORMATION FOR CODE
REVIEWS ... 31

Standard on Secure Systems Development Page 4 of 32

1. ADOPTION PROCEDURE

This Security Standard is adopted in accordance with Article 10(3) of Commission
Decision C(2006) 3602 concerning the security of information systems used by the
European Commission, adopted on 16 August 2006.

It is drawn up under the responsibility of the Security Directorate pursuant to Article
9(1)(b) and takes into account the items listed in Article 10(2) of Commission
Decision C(2006)3602, in particular internationally recognised norms and standards
applicable in the field of information systems security.

Under Article 10(3) of Commission Decision C(2006) 3602, the implementing rules
may be supplemented by measures of a technical, physical, procedural or
organisational nature proposed by the Director of the Security Directorate and
adopted by the Director-General of the Directorate-General for Human Resources
and Security in consultation with departments that have a legitimate interest. These
supplementary measures are called ‘security standards’ where their application is
mandatory, or ‘security guidelines’ where their application is optional or where they
provide guidance on security standards implementation.

2. INTRODUCTION

Much of the European Commission's activity is supported by information
technology, and software applications are constantly in the process of development
or acquisition to support the evolving needs. The confidentiality, integrity and
availability of these applications and their data are always important, and the
increasing use of applications whose user community extends beyond the
Commission's boundaries means that the risks relating to these applications are also
growing.

Software applications must be secured in order to protect them from accident or
abuse. The necessary controls must be built into information systems, and the
earlier that this is done, the better, since adding them later on is more costly and
likely to leave vulnerabilities if the applications have not been designed with
security in mind.

3. OBJECTIVES

This standard provides instructions for the processes relating to the acquisition,
development and maintenance of information systems. The objective is to ensure
that appropriate security controls are identified and included in such systems, and
that risks such as the introduction of unauthorised code are minimised. The
standard also contains specific controls for outsourced software development.

4. SCOPE

This standard applies to all information systems that are acquired or developed by or
on behalf of the European Commission. The measures mandated by this standard
must be followed by all relevant personnel, including all Commission officials,
contractors and third parties involved in this process.

Standard on Secure Systems Development Page 5 of 32

These standards are minimum requirements for all systems. Additional
requirements may be applied for systems handling EUCI, as mandated by
Commission Decision 2001/844/EC, ECSC, Euratom.

5. THREATS COVERED

Security controls defined in this information security standard will help to reduce
the impact of the following threats (their description is in the Standard on
Information Security Risk Management):

T31 – Software malfunction

T36 – Corruption of data

T38 – Error in use

T39 – Abuse of rights

T40 – Forging of rights

T41 – Denial of actions

6. TERMINOLOGY

Accreditation: A formal declaration by a Security Accreditation Authority
according to Commission Decision 2001/844/EC, ECSC, Euratom that an IS is
approved for operation at an acceptable level of risk, based on the implementation
of an approved set of technical, managerial, and procedural safeguards.

Buffer overflow: A condition where a computer storage field's limits are exceeded,
causing data to overflow into adjacent memory. This can cause unexpected results
such as application crashes or execution of malware.

Certification: A comprehensive assessment of the management, operational, and
technical security controls in an information system, made in support of security
accreditation, to determine the extent to which the controls are implemented
correctly, operating as intended, and producing the desired outcome with respect to
meeting the security requirements for the system. Certification is normally
performed by an external body and results in a formal certificate of compliance.

Check digit: A number (usually one or two digits long) used to validate a numerical
field, such as a bank account number or national identity number. Check digits are
the result of calculations involving the digits in the numerical field.

Checksum: A calculated number used to verify a set of numbers.

CIA: Confidentiality, Integrity and Availability – the three major aspects of
Information Security. EC systems must be classified for each of these three aspects
(see Commission Decision C(2006) 3602).

Common Criteria: The Common Criteria for Information Technology Security
Evaluation (ISO/IEC 15408) constitute a framework for specifying functional and
assurance requirements.

Standard on Secure Systems Development Page 6 of 32

Cross-site scripting: A web application attack method whereby an attacker can
execute scripts in the victim's browser which can hijack user sessions, deface web
sites or redirect the user to malicious sites.

Digital Signature: Normally, a digest or hash of a message encrypted with a private
key to assure message integrity and non-repudiation.

Evaluation Assurance Level (EAL): A numerical grade (from 1 to 7) assigned
following the completion of a Common Criteria security evaluation. Higher EALs
indicate greater levels of formality in the design and testing processes.

Information System (IS): A set of software that handles information (or data).
Other components may also be included in the overall scope of an IS, including
hardware, other software (operating systems, middleware etc.), networks, personnel,
administrative processes and external entities. See section 7 for further information.

Input data: Information that is entered into an application. This is normally either
information entered directly into the application by a user, or data coming from
another application.

Input data validation: The process of checking that input data appears to be
correct (within defined parameters) and does not contain malicious input (such as
code fragments trying to bypass application security).

Message Authentication Code: A specific type of (symmetric) cryptographic hash
function used to provide assurance of message integrity.

Message digest: A summary version of a message that is often encrypted or hashed
and used to verify the integrity of the received message.

SOA: "Service Oriented Architecture", in which Information System(s) is/are
realised in sets of independent and interoperable services. XML (eXtensible Markup
Language) is commonly used for interfacing with such services.

SQL Injection: A method of attacking applications by entering database commands
in data entry fields in order to bypass security controls or cause application errors.
This is one of the most common ways of attacking applications.

Systems Development Life Cycle (SDLC): the process of creating or altering
information systems, and the models and methodologies that people use to develop
these systems. Many different SDLCs have been developed with different
emphases and phases; this standard uses a basic model consisting of five phases:
Initiation, Development, Implementation, Operation and Disposal.

Target System: An Information System, including all relevant components, that is
the subject of a security policy, plan or review.

7. BACKGROUND INFORMATION

Information systems are essential to many of the administrative processes of the
European Commission. The vast majority of the information handled by the
Commission is computerised, and the quantity of this information and the
complexity of the systems that handle it are ever increasing. Clearly, it is necessary

Standard on Secure Systems Development Page 7 of 32

to protect these systems and the information that they handle, and studies have
shown that this is best achieved as early as possible in the lifetime of a system. The
goal of this standard is to define when and how this should be done, for both new
and existing systems.

It is important to correctly understand the scope of this standard so that its rules are
applied whenever they are relevant. One difficulty in doing this is the definition of
what is meant by an Information System (IS) for the purposes of this standard. The
Commission Decision C(2006) 3602 upon which this standard is based defines an
information system as:

"A set of equipment, methods and procedures, and where relevant also persons,
personnel, organised to perform information processing functions1."

In the context of the current standard, it may be helpful to expand upon this
description. An Information System is fundamentally a set of software that in some
way handles information (or data). Around this core of software and data may be
found other components, including hardware, other software (operating systems,
middleware etc.), networks, personnel, administrative processes and external entities
(normally as providers or users). A more precise definition is difficult since
"information system" is a rather abstract concept.

It must also be noted that the definition of Information Systems is intended to be
inclusive rather than exclusive, encompassing all types of software (application
software, middleware, operating systems etc.). As a general principle, all computer
hardware2 should be part of an identified Information System, and all ISs must have
a System Owner3 and be subject to the rules of this standard.

The current standard covers the process of developing, acquiring and maintaining
information systems, and is intended to ensure that a well managed process is in
place to assure that all ISs contain adequate controls to protect their confidentiality,
integrity and availability. The security considerations for each system are
documented in a Security Plan.

The software components of ISs may be acquired in two principal ways: by
acquiring existing third party products (whether commercial or open-source), or by
developing bespoke software; this standard contains rules for both situations. There
are also combinations of the two, such as external software development or products
requiring extensive customisation (beyond simple configuration), and in these cases
the rules applying to both situations must be applied as relevant.

1 C(2006) 3602, Article 3, paragraph 3

2 The precise definition of what constitutes computer hardware is also difficult, particularly at the
increasingly blurred boundaries between computers and other devices or storage media. For example,
a PDA is clearly a computer system, but what about a mobile telephone? A fixed telephone may not
be a computer system on its own, but may be part of a larger IS, which includes the exchange and all
telephones connected to it.

3 As mandated by the Standard on Asset Management

Standard on Secure Systems Development Page 8 of 32

The scope of the security requirements should be defined by determining the
boundaries of the IS; the system so described is often referred to as the "security
target", or the "target system". It is important to define the target system so that it is
clear where controls need to be applied, particularly those that are intended to
protect the system from external threats. The definition of the target system – and
its perimeter – may include different types of elements, such as geographic location,
network segments, hardware or organisational boundaries.

This standard also contains rules on technical aspects of secure systems
development. However, detailed information on the types of application attacks and
vulnerabilities is outside the scope of this standard, since this information is
constantly changing as new issues are identified. Extensive information is available
from reputable sources, such as the OWASP4 which publishes information on the
most common application security risks. The Commission follows its own
development methodology for internally developed systems, with which this
standard is aligned5.

The requirements of an information system are often described in a series of
"business rules" describing its functionality and use. Some of these business rules
should address the security requirements, and should be expressed in the security
requirements, such as the validation, processing and integrity rules that are
discussed in this standard.

8. SECURITY REQUIREMENTS OF INFORMATION SYSTEMS

Policy objective 7.1.1 – Security requirements of information systems – System
owners must ensure that their security requirements are properly implemented.
Therefore, all security requirements must be identified at the requirements phase of
a project and justified, agreed and documented as part of the project documentation.

8.1. General rules

8.1.1. Information systems security governance

Any information system that is receiving, processing or outputting data is at
risk of violating Confidentiality, Integrity, and Availability constraints. The
design and implementation of the application must ensure that the risks of
breaches of Confidentiality, Availability and Integrity are reduced to an
acceptable level.

All information systems must have a System Owner (SO)6, whose
responsibilities include system security (see the Standard on Asset
Management). The System Owner may appoint a System Security Officer
(SSO) who is then responsible for the day-to-day security issues, although

4 OWASP specifically addresses web applications (see http://www.owasp.org/)

5 The "RUP@EC" methodology is currently used, and that methodology is being updated to ensure its
compatibility with this standard.

6 See Annex II of C(2006) 3602 for the definition of the roles mentioned in this section.

Standard on Secure Systems Development Page 9 of 32

the SO retains overall responsibility. The LISO should also be involved on a
consultative basis.

Some systems may also have a Data Owner separately from the SO. In this
case, the Data Owner should also take part in the definition of the security
requirements as regards the data for which he or she is responsible.

Other people or entities such as project managers, IRMs and system
suppliers may also be involved in the definition, development or provision of
security measures. Their roles are outlined in section 13 below.

8.1.2. Defining security requirements

Formally defined and documented business requirements must exist for each
information system. The system must also be classified in accordance with
the Standard on Asset Management. The security requirements must be
documented in a Security Plan7.

System requirements for information security and processes for
implementing security must be integrated in the early stages of information
system acquisition or development projects.

A minimum list of issues to be addressed at this stage includes:

 Access controls (mandatory or discretionary) (see the Standard on
Access Control and Authentication)

 Administrator controls (see the Standard on Access Control and
Authentication)

 Business continuity (see the Standard on Business Continuity
Management)

 Data classification (see the Standard on Asset Management)

 Data encryption (see the Standard on Cryptography and Public Key
Infrastructure)

 Data input controls (see section 9.2)

 Data output validation and access (see section 9.5)

 Data storage reliability and recovery (see the Standard on Back-up)

 Network security (see the Standard on Network Security)

 Operating system configuration

7 See section 3.4 of the "Implementing Rules for Commission Decision C(2006) 3602 of 16.8.2006", and
the related "Guidelines on Security Plan".

Standard on Secure Systems Development Page 10 of 32

 Physical security of system devices (see the Standard on Physical
and Environmental Security)

 Protective markings (see "C(2006) 3602 of 6.8.2006" for data
classified as LIMITED, and Commission Decision 2001/844/EC,
ECSC, Euratom of 29.11.2001 for EUCI).

 Segregation of duties (see the Standard on Access Control and
Authentication)

 System level access (see the Standard on Access Control and
Authentication)

 System-to-system identification (see the Standard on Application
Security)

 User access methods (i.e. how users access data; whether it is
directly, using application software, via a database interface etc.)

 User identification (see the Standard on Access Control and
Authentication)

 User accountability (see the Standard on Logging and Monitoring),
especially when dealing with sensitive data

See the standards mentioned for further details on many of these topics.

8.2. Developed Systems

8.2.1. Guidance on applicability

Where systems or applications are developed by or on behalf of the
Commission, security requirements must be included at appropriate phases
during the development as described below. This section does not provide a
full description of the development phases, but only the key security-related
issues that must be addressed at each stage.

For the purposes of this document, the rules will be based around a standard
Systems Development Life Cycle (SDLC) consisting of five phases:
Initiation, Development, Implementation, Operation and Disposal. A formal
software development methodology must be used for developing systems,
although it does not have to adhere to the model described in this section.
Where a different methodology is used, these rules must be mapped onto
that methodology and applied accordingly.

At the time of writing, the RUP methodology is the standard software
development methodology used by the Commission. The following table
shows the high-level correspondence between RUP and the SDLC used here.

SDLC phase RUP phase

Initiation Inception

Standard on Secure Systems Development Page 11 of 32

Development Elaboration

 Construction

Implementation Transition

Operation (not covered)

Disposal (not covered)

The security requirements defined and implemented in these phases must
make use of the general rules proscribed in section 8.1 above.

The Security Plan is the principal document that must be written for each
system. It must be updated during the development process as relevant (see
the Guidelines on Security Plan).

8.2.2. Initiation phase

The first phase covers the initial steps in a development project, up to the
point where the development is approved. This typically covers steps such
as a feasibility study, a high-level definition of business requirements and an
estimate of the scope and budget.

During this phase, the following steps must be taken:

 The data to be handled by the system must be analysed to establish
its level of sensitivity and classification for confidentiality, integrity
and availability8

 Personal data must be identified and evaluated for privacy
requirements in accordance with Regulation (EC) No 45/2001.

 The system's security level must be established as STANDARD or
SPECIFIC9

 The geographical and organisational scope, and the network topology
of the system must be reviewed to identify areas where data may pass
through different security zones and therefore require additional
protection such as encryption (e.g. data passing over public
networks)

 High-level security requirements must be produced, based on an
initial threat evaluation (when performing business impact analysis
and starting the security plan)

8 As described in Annex I of the Commission Decision C(2006) 3602 and the Standard on Asset
Management

9 Commission Decision C(2006) 3602, Annex I

Standard on Secure Systems Development Page 12 of 32

 If the system's security level is classified as SPECIFIC, a risk
assessment must be performed (see the Standard on Information
Security Risk Management) and subsequently a Security Plan must
be written, describing any additional security measures to be
implemented

This step (or parts of it) may take place before a decision is made whether to
develop the system or acquire an existing third party product. The result of
this decision does not materially affect this phase from a security
perspective, since the security requirements should serve either as a basis for
the system design or as criteria for the selection of a third party product.

8.2.3. Development Phase

This phase covers the detailed design, development and testing of the
system. Although the development phase normally focuses on the software
being written, the accompanying processes and other measures should be
included while considering the security of the administrative processes
served by the system, particularly when designing non-automated security
measures.

When software is developed by or on behalf of the Commission, source code
must always remain available. For specific rules on outsourced software
development, see section 12 below.

During this phase, the steps in the subsections below must be performed:

Detailed design

During this sub-phase, the requirements documented in the Initiation phase
are expanded into a detailed description of the system to be developed
(taking into account any subsequent modifications to the initial
specifications).

 The security requirements from the Initiation phase must be included
in the detailed system design.

 Security requirements that are not explicitly documented in the
Initiation phase must also be included to ensure that the system will
meet the generic requirements appropriate to the information
classifications (for CIA) and the system security level.

Coding

In this sub-phase the program code is written and tested locally (unit or
program testing). A certain amount of peer review and testing is performed
to ensure that the quality of the code is sufficient for it to pass into the
formal testing phase.

 Secure software development techniques must be followed during the
development (see section 9)

Standard on Secure Systems Development Page 13 of 32

 Coding standards appropriate to the development tools and
techniques being used must be applied (see 0)

 Code reviews must be performed (see section 11.2)

 If system accounts are used, they must be designed according to the
relevant rules (see section 10 of the Standard on Access Control and
Authentication)

Testing

Testing must be performed on all software developments to ensure that they
meet the requirements, operate correctly and securely, and can cope with
expected volumes.

The subject of software testing is complex and there are many types of tests,
such as unit tests (normally performed during the preceding sub-phase),
system tests, volume tests, integration tests and acceptance tests; moreover,
the nomenclature differs between different development methodologies.

Normally, separate System, Volume and Acceptance tests are required to
meet all of the different testing needs. In addition, specific test procedures
such as vulnerability assessments or penetration tests can provide greater
assurance on system security. The system owner should determine what
constitutes adequate testing for each system. See section 10 for more
information on test environments.

In relation to security, standard testing should focus at a minimum on the
issues below. The levels of protection applied must be appropriate to the
information classification in each area.

Confidentiality – to ensure that information is protected against
accidental or deliberate disclosure during processing, storage and
transmission

Integrity – to ensure that information is correct and cannot be
accidentally or deliberately corrupted during processing, storage and
transmission

Availability – to ensure that the system will be available during the
specified service window, that it can cope with the expected peak volumes
and is resistant to attacks such as denials of service

Specifically, the following rules must be followed during testing:

 Test plans must be created, which describe the tests to be performed
and the expected results.

 The results of tests must be documented

 Suitable test data must be designed and protected according to their
classification (see section 10.1)

Standard on Secure Systems Development Page 14 of 32

 The security requirements developed in the "Detailed Design" step
must be specifically tested to ensure that they have been correctly
developed

 Testing must provide assurance that the data classifications and
system security level established during the Initiation phase are
adequately supported by the system as developed

 Penetration tests must be performed for systems with a security level
of SPECIFIC (they are recommended but not mandatory for
STANDARD systems) – see section 11.3 for rules on performing
penetration tests

 All software bugs or other issues identified during system,
penetration, and acceptance testing must be recorded and tracked to
resolution (correction or acceptance)

8.2.4. Deployment Phase

In this phase, the system is implemented into the live environment and tested
to ensure that it works as expected in production. This phase often also
includes the first few weeks or months of operation, when the development
team is still available to troubleshoot errors and fix bugs.

 During implementation, care must be taken to ensure that the system
and its associated security procedures are implemented as designed.
In the event of any change, the security measures must be reviewed
and updated if necessary.

 The system must be signed off as ready for use by the system owner
or an approved delegate. The system acceptance process for this
approval must include a review of the security measures.

8.2.5. Operation Phase

During this phase, the system is in regular use and the security measures
must be operated as determined beforehand. In addition, most developed
applications undergo regular changes or upgrades, and so the following steps
must be taken:

 Security measures must be operated and regularly checked that they
are working correctly

 Security requirements must be regularly reviewed and updated where
necessary (e.g. in case the security target changes)

 Security requirements must be analysed for all application changes
(see section 11.1 below on change control procedures)

 A process for identifying and addressing technical vulnerabilities
must be in place (see the Standard on Technical Vulnerability
Management)

Standard on Secure Systems Development Page 15 of 32

 Systems must be subjected to periodic security reviews, depending
on their sensitivity (see the Standard on Compliance).

8.2.6. Disposal Phase

When a system or a component reaches the end of its lifetime, care must be
taken to ensure that any sensitive information is securely removed before the
physical disposal of equipment. See the Standard on Sanitisation of Media
for instructions on how to do this.

In some cases, information may need to be securely archived after a system
is withdrawn from use. In this case, the security requirements for the
archive must be analysed and agreed in the same way as for any other
information system.

8.3. Third party Products

Third party products10 acquired by the Commission should follow the same
process as described in section 8.2 above, except that the Development
phase (section 8.2.3) is replaced by a formal Acquisition phase.

Depending on the security requirements, consideration should be given to
whether security certification or accreditation is required for such products,
and at what level (e.g. Common Criteria EAL certifications).

During the Acquisition phase, the following steps must be performed:

 The security requirements from the Initiation phase must be reviewed
and included in the formal system requirements (included in the Call
for Tender or similar documentation sent to potential suppliers)

 Security requirements must be evaluated in the technical criteria, and
should be given sufficient weight to have a significant impact on the
product selection. In some cases (as determined by the SO in
consultation with the LISO), certain security requirements may be
essential so that their non-fulfilment mandates the rejection of a
tender.

 If the system is classified as SPECIFIC, a risk assessment must be
performed (see the Standard on Information Security Risk
Management)

 The supplier should provide information about their testing
procedures in order to provide assurance of the system's proper
functioning and resistance to errors and attacks. If this is not
possible (as may be the case, for example, for Open Source

10 Often referred to as COTS (Commercial Off The Shelf) products. This category is intended to cover all
products not made in-house, including software downloaded from third parties (e.g. via the Internet)
and open source products that may be acquired for free, and therefore possibly without following a
procurement procedure.

Standard on Secure Systems Development Page 16 of 32

collaboration projects), then the above information should be
collected through other means.

 The contract for the system(s) and/or services provided must include
all relevant security specifications. If the software is acquired
without a contract, then the security features should be thoroughly
checked against the security requirements already documented.

 Where the security functionality in a proposed product does not
satisfy the specified requirement then the risk introduced and
potential compensating controls should be considered prior to
acquiring the product.

 Where additional functionality is supplied and causes a security risk,
this should be disabled or the proposed control structure should be
reviewed to determine if advantage can be taken of the enhanced
functionality available (without introducing new vulnerabilities).

The acquisition phase may focus primarily on the system being acquired, but
the accompanying processes and other measures should not be neglected
since they may need to be modified according to the capabilities of the
system selected.

9. CORRECT PROCESSING IN APPLICATIONS

Policy objective 7.2.1 – Input Data Validation – Data input to applications must
be validated to ensure that this data is correct and appropriate.

Policy objective 7.2.2 – Control of Internal Processing – Validation checks must
be incorporated into applications to detect any corruption of information due to
processing errors or deliberate acts.

Policy objective 7.2.3 – Message Integrity – Requirements for ensuring
authenticity and protecting integrity of messages exchanged between applications
must be identified, and appropriate controls identified and implemented.

Policy objective 7.2.4 – Output Data Validation – Data output from an application
must be validated to ensure that the processing of information is correct and
appropriate to the circumstances.

In order to best guarantee the correct processing of data in applications, the
examination and validation of data should be automated as much as possible.
Where manual checks are performed, clear responsibilities of all personnel involved
in the process must be defined and communicated to the relevant personnel, and
activity logs of the checks must be maintained. The rules in this section are
intended to cover these goals.

9.1. Coding Standards

Coding standards must be documented for all coding technologies used in
EC development projects. These coding standards must be followed by all

Standard on Secure Systems Development Page 17 of 32

developers writing or reviewing code. Training may be required to ensure
that all relevant personnel are sufficiently aware of the coding standards.

The coding standards should cover the issues described in the rest of this
section below11.

9.2. Input Data Validation

All data entered into Commission information systems, either manually or
automatically, must be validated, when appropriate, with input checks such
as boundary checking or limiting input fields to specific ranges or values in
order to prevent or detect problems such as:

 values outside normal ranges

 invalid characters in data fields

 missing or incomplete data

 exceeding upper and lower data volume limits

 unauthorised or inconsistent control data

 attacks using malformed input, such as buffer overflows or SQL
injection

Free text or numerical input fields are to be replaced by enumerated lists
(whitelists) when possible. Applications must incorporate validation checks
in business rules, to avoid errors or inconsistencies in multiple routines.
Transactions which fail such checks must either be (a) rejected with a
notification of the rejection sent to the submitter, (b) corrected and
resubmitted, or (c) suspended pending further investigation.

In distributed architectures, data validation should be performed at the server
level to protect against malicious data coming from compromised clients.
Client-level checking may be implemented in addition to provide defence in
depth12.

9.3. Control of Internal Processing

Data that has been correctly entered can be corrupted by processing errors or
through deliberate acts. The validation checks required will depend on the
nature of the application and the impact of any corruption of data.

Areas of risks must be identified in the processing cycle and validation
checks must be included for the identified risks. Appropriate controls must

11 Although this standard is normally applicable to individual information systems, coding standards should
be established for the whole Commission, not for each individual system.

12 Client-side checking can have other benefits such as reducing unnecessary network traffic and server
load.

Standard on Secure Systems Development Page 18 of 32

be identified for applications to mitigate risks during internal processing.
The architectural decisions on the functionality and implementation of these
controls must be documented.

Examples of internal processing checks include:

 validating check digits in numerical fields (e.g. bank account
numbers)

 session or batch controls, to reconcile data file balances before
transaction commitment, and ensure the rolling back of failed
transactions13

 balancing controls, to check opening balances against previous
closing balances

 validation of system-generated data (e.g. checking whether values
calculated by the system are within expected ranges)

 checks on the integrity, authenticity or any other security feature of
data (or software) downloaded/uploaded, or verifying hash totals of
records and files

 checks to ensure that application programs are successfully run at the
correct time (for instance, if a job that is normally executed at night
is run during the day, this may indicate an error or unauthorised
activity)

 checks to ensure that programs are run in the correct order and
terminate in case of a failure, and that further processing is halted
until the problem is resolved.

 handling exceptions with meaningful error codes or messages
preventing blocking situation and allowing debugging

 creating a log of the activities involved in the processing.

9.4. Message Integrity

Information systems often receive data in the form of messages from other
systems (or modules of the same system), typically containing a number of
data fields. Integrity checks must be performed on all such transmissions to
ensure that the information has not been accidentally or deliberately
corrupted.

Issues that can be detected through message integrity checks include data
modification, substitution or replay, or incomplete data.

13 This is often part of (distributed) transaction management. Additional checks must be coded in case this
is not managed automatically.

Standard on Secure Systems Development Page 19 of 32

If an integrity issue is detected, the system must log the error and take
appropriate action, such as:

 ignore the message

 request the data again

 inform the administrator

 reroute traffic to other lines

There are several types of message integrity controls giving different types
and levels of assurance, including:

 Checksums or check digits

 Message digests or hashes

 Message encryption

 Message Authentication Code (MAC)

 Digital signatures

If any form of encryption is used as a measure for message integrity, the
rules in the Standard on Cryptography and Public Key Infrastructure must
be followed.

9.5. Output Data Validation

Output data may be incomplete or incorrect, even after checks on input data,
messages, and internal processing. Consequently, integrity checks must be
in place to permit validation of output data.

The design and implementation of the application must ensure that the risks
to information integrity are minimised. Specific output validation controls
to consider are similar to those listed above for input data, messages and
internal processing checks. These controls may include:

 plausibility checks to test whether the output data is reasonable

 reconciliation control counts to ensure processing of all data

 completeness checks to ensure that all intended output information is
present

 displaying or printing additional information to permit manual
validation of output data

10. SECURE DEVELOPMENT ENVIRONMENT

Policy objective 7.2.5 – Protection of System Test Data – Test data must be
selected carefully and protected and controlled.

Standard on Secure Systems Development Page 20 of 32

Policy objective 7.2.6 – Control of Operational Software – Installation of
software on operational systems must be strictly controlled.

10.1. System Test Data

The adequate testing of information systems before implementation is
critical to ensure their confidentiality, integrity and availability. Inadequate
testing may lead to problems such as breaches of confidentiality, data
corruption or system crashes, and so testing is a fundamental part of system
security.

Test data must be selected and/or designed carefully to ensure that test
procedures are adequate. In particular, testing must check that:

 Data processing operations are performed correctly

 Systems can deal with both correct and incorrect data, including
malicious data inputs (such as SQL injection attempts)

 Systems can cope with the expected peak volumes of data

 Error-checking and validation routines are in place and functioning
properly

 Error messages do not give information that could be useful to
malicious users (e.g. software versions, names of database elements
etc.) – instead, this information should be recorded in error logs that
are not accessible by end users.

Test data should therefore include invalid data (e.g. text or special characters
where numbers are expected, or invalid dates such as 31/02/2010) which
must be created manually. Test data may also include copies or extracts of
live data under the conditions given below. It may be necessary to have
multiple sets of test data to test all aspects of a system.

The use of operational databases containing personal information or any
other sensitive information for testing purposes should be avoided where
possible. Testing with personal or otherwise sensitive information is
permissible provided that the development is performed intra muros (within
the Commission), confidentiality agreements are in place with any external
staff having access to the data, and data access rights respect the "need to
know" principle. If any of these conditions are not met, then all sensitive
details and content must be removed or modified beyond recognition before
use.

System testing must not be performed on operational data unless the
required safeguards are in place. Rules must exist for the use of production
data during system testing and must include the following:

 When systems are tested, the resulting data and test results must be
handled as sensitive information until the information can be
disposed of properly.

Standard on Secure Systems Development Page 21 of 32

 Any software tools specifically used for testing code and data must
be protected from access by unauthorised people.

 Every copy of operational information to a test application must be
authorised.

 The copying and use of operational information must be logged to
provide an audit trail.

 The use of operational information for testing purposes must be
approved by the System Owner (or Data Owner, if separate), or an
approved delegate.

Test data must be protected and controlled by suitable physical and technical
controls and procedures. The classification of the original data, where used,
must be respected and appropriate security measures taken in testing
environments. If data sets used for testing are modified in a way that
reduces their classification level14, security measures may be applied to the
resulting test data sets at a lower level (whilst respecting the minimum rules
stipulated by this standard); however, care must be taken to ensure that the
original information cannot be recreated or inferred from the modified test
data.

Guidance on issues that should be tested may be found in Annex 1.

10.2. Operational Software

Security procedures must be in place to cover the implementation of
software on operational systems (both servers and workstations), and the
associated movement of code.

When establishing controls on production or operational systems the
following must be considered:

 Operating systems must be hardened, notably by removing powerful
software utilities that are not needed for normal system operations
(e.g. compilers or debuggers).

 Production servers must have formal change management processes
in place (see section 11.1). These systems may only hold approved
executable code, and not development code or compilers (unless
required for normal operation).

 The updating of the operational software, applications, and program
libraries must only be performed by trained administrators upon
appropriate management authorisation and following extensive and
successful testing (see section 10.1 above). An audit log must be
maintained of all updates to operational systems files.

14 Reducing the classification level for test data must be done with due care and consideration of the risks
involved. In particular, the damage to reputation of a breach of confidentiality of test data may be as
great as a breach of real data, even if the information has been anonymised.

Standard on Secure Systems Development Page 22 of 32

 Previous versions of software must be retained as a contingency
measure.

 Old versions of software should be archived, together with all
required information and parameters, procedures, configuration
details, and supporting software for as long as data requiring these
versions is retained in archive.

 All change control operations must include roll back plans and event
logging.

Wherever there is a potential impact, changes to operating system and any
other software running on live systems must be tested for compatibility with
the application software before being implemented.

Any third party supplied software used in operational systems must be
maintained at a level supported by the supplier and software patches should
be applied (after testing) when they can help to remove or reduce security
weaknesses.

Physical or logical access may only be given to suppliers for support
purposes when necessary, and with management approval. The supplier’s
activities must be monitored.

Where possible, automated integrity checking mechanisms should be
implemented to ensure the integrity of the software.

11. SECURITY IN DEVELOPMENT AND SUPPORT PROCESSES

Policy objective 7.3.1 – Change Control Procedures – The implementation of
changes must be controlled by the use of formal change control procedures.
Modifications to software packages must be discouraged and limited to necessary
changes, and all changes must be strictly controlled. Access to program source code
must be restricted.

Policy objective 7.3.2 – Code Review – Software code developed for Commission
services must be reviewed using a formal process in order to guarantee that its
functions are implemented in accordance with the specifications and that there is no
malicious code.

11.1. Change Control Procedures

11.1.1. General Rules

This section gives rules for controlling changes to software15 and related
materials (such as design and test documents and data). This includes
software developed by or on behalf of the Commission, as well as

15 Change management is also covered, at a more general level, by the Standard on Operational
Management. The change control rules given here are compatible with this standard, but contain
details that are specific to systems development processes.

Standard on Secure Systems Development Page 23 of 32

commercial products that require changes (updates, patches etc.), although
some of the measures are not applicable for commercial products (as noted
in the text).

Change control is a complex subject, and this standard focuses only on the
high level security requirements for the software change control process.
The procedures used must be designed carefully on the basis of information
such as the system's requirements, CIA classifications and operating
environment. The rules in this section are the minimum that must be
followed.

Formal change control procedures must be in place for all systems owned by
the Commission. The objective of these procedures is to protect systems
from unauthorised or accidental changes and to ensure that systems are
adequately tested before implementation (i.e. primarily to safeguard the
integrity of the source code, although its confidentiality and availability are
also protected).

Key security-related aspects of change control are found in section 11.1.5
below. A complete audit trail must be maintained for all change control
processes.

11.1.2. Segregation of Duties

The different roles involved in making and implementing changes must be
segregated to ensure that unauthorised changes are not made. At a
minimum, developers, system/acceptance testers and operational staff must
be separate, and developers must not have write access to production
systems. Where possible, personnel administering the change control
procedures and system testers should also be segregated from the other roles.

The appropriate segregation of duties should be determined on the basis of
the CIA classifications of the system and risks such as potential conflicts of
interest or opportunities for fraud, and approved by the System Owner.

11.1.3. Protection of technical environments

Separate environments must be used for Development, Testing and
Production (other environments may also exist, although generally they will
fit into one of these three categories). The transfer of files between these
environments must be closely controlled as described in section 11.1.5
below. The Testing environment must be as similar as possible in its
technical configuration to the Production environment to reduce the risk of
systems behaving differently in Production than expected.

Access to source code, compiled code, development tools and test data must
be limited to authorised individuals in all environments. Where an "open
source" approach is taken, the same principles must be followed even though
the development community authorised to have read access to code may be
larger (and possibly in some cases extending outside the Commission).

Standard on Secure Systems Development Page 24 of 32

11.1.4. Software Repository

A software repository must be implemented for all software developed by or
on behalf of the Commission to protect all relevant electronic records from
loss or unauthorised changes. The repository should hold copies of
documents, code and other items such as:

 System requirements

 System design

 Source code

 Test data

 Compilers

 External libraries

 Licences

 Encryption keys (where appropriate; see the Standard on
Cryptography and Public Key Infrastructure for more information on
when keys may or may not be copied)

 User and operational documentation

The repository must be protected adequately and access to it restricted on a
need-to-know basis.

11.1.5. Change Control Processes

Change Request

All changes must be initiated with a formal change request. In order to
obtain approval, changes must:

 be adequately documented

 be submitted by authorised personnel

 be reviewed for any potential impact on system security or related
processes

 be managed so that they do not conflict with or overwrite other
changes to the same or related systems

 be restricted to the minimum necessary for business and security
needs in order to limit the work, disruption and potential risks
involved

Standard on Secure Systems Development Page 25 of 32

 be approved by the SO16 before code is released or work begins on
the change

Release Source Code

For changes where source code (or similar objects) must be updated, the
code must be released to the developer(s). Source code that is developed by
or on behalf of the Commission must be protected (e.g. through the use of a
change control system). The measures taken to protect source code must
ensure that:

 The production system is built from code in the versioning system,
and developers must not be allowed to directly manipulate the code
or binaries of the production system

 Developers must be specifically authorised to access source code or
binaries on a need-to-know basis

 Developers must not interfere with version management systems by
directly modifying source code in the repository

 All source code is marked with version numbers

 Controls must be in place to ensure that legitimate changes are not
accidentally overwritten, e.g. due to simultaneous changes

 At least the last six versions or two years' history of source code must
be retained (whichever is longer)

Accept changes

Modified source code must be submitted for formal testing when the
development phase is completed. For code to be accepted into formal
testing, the following conditions must be fulfilled:

 The changes must have successfully17 completed local testing (unit
testing, program testing etc)

 All modified source code must have been subjected to a code review
(see section 11.2 below)

16 ITIL recommends the use of a Change Advisory Board (CAB) consisting of a number of members to
approve change requests. This is recommended for larger systems in the Commission.

17 The definition of a successful test is not straightforward, since some errors or issues identified during
testing may not be serious enough to require remediation. The System Owner should review the test
results and decide whether the test results are acceptable. From a security perspective, there should be
no significant exploitable vulnerabilities in the code for it to be acceptable.

Standard on Secure Systems Development Page 26 of 32

Transfer to Production

For the change to be implemented, the code18 must be transferred to the
Production environment. Before this can take place, the change must:

 have successfully passed all required testing phases in the Test
environment (e.g. system tests, volume tests, acceptance tests,
penetration tests)

 be fully documented, including updates to existing system
documentation, operating procedures, user instructions etc.

 be signed off by the project leader and the SO or an approved
delegate.

 be properly scheduled, and all personnel and users concerned notified
of the change

Emergency Changes

Occasionally, changes to systems are necessary at very short notice and there
is insufficient time to go through the normal change process. An emergency
change control procedure must be drawn up for these situations. This
procedure must include:

 An evaluation of the risks involved in the emergency change before
it is performed

 Appropriate testing to the extent possible within the timeframe

 Formal approval (including acceptance of the risks involved) from
the SO or an approved designate before an emergency change is
made

 A back-up of the elements to be changed

 A review of the emergency change shortly after it is implemented

 Application of other key measures in the change control process after
the emergency change, including a formal review and acceptance

 Identification of any ongoing normal changes that are affected by the
emergency change and notification of the personnel involved.

11.1.6. Changes to Third Party Products

As a general rule, vendor-supplied or open-source software packages should
be used with as little modification possible. When updates to acquired

18 This standard will not address the question as to whether source code or compiled code should be
transferred since this may depend on the technology used. However, whichever method is chosen
should be used consistently and in accordance with secure best practices.

Standard on Secure Systems Development Page 27 of 32

products are released by the publisher, they should be evaluated to determine
whether the change needs to be applied to the Commission's production
systems. If so, the change must follow the relevant processes described in
section 11.1.5 above (i.e. omitting any steps that relate only to systems
developed by or on behalf of the Commission).

Whenever it is proposed to modify an acquired product for the Commission
in a way that may make it incompatible with the published version, the
following points should be considered:

 the risk of built-in controls and integrity processes being
compromised

 whether the consent of the vendor should be obtained in cases where
the publisher does not perform the changes

 the possibility of obtaining the required changes from the publisher
as standard program updates

 the impact if the organisation becomes responsible for the future
maintenance of the software as a result of changes

Changes to packaged software should be minimised and carried out in such a
manner that the change will not introduce new problems. Security
requirements relating to the change must be designed and implemented.

Where the standard packages are modified, the original software must be
retained and the changes applied to a clearly identifiable copy.

All such changes must be fully tested and documented, so that they can be
re-applied if necessary to future software upgrades.

11.2. Code Review

Code reviews have been shown to improve the quality of source code and to
reduce the cost of subsequent maintenance, as well as identifying potential
bugs, design flaws, unauthorised functionality and backdoors. All systems
that are developed by or on behalf of the Commission must be subjected to
code reviews as part of the system development assurance process. The
level of code reviews performed should be proportional to the perceived
risks of the information system.

Developers and reviewers must be trained in secure coding methods
appropriate to the languages used, and coding standards must be documented
and put in practice. Code reviews must be performed by personnel other
than the developers who wrote the code (they may be performed as peer
reviews by other developers).

There are several different methods for performing code reviews. The
project leader should select an appropriate method during the project
initiation phase, and include the code reviews in the work estimates.
Automated code review tools may be used but may not fully replace human
review, since they cannot cover all aspects of a code review (particularly

Standard on Secure Systems Development Page 28 of 32

identifying malicious code). Where possible, code review tools should be
configured to support the coding standards.

Clear objectives must be set for each code review by understanding the
business requirements of the system, its environment, the relevant coding
standards and any potential security issues relating to the code under review.

For further information relating to code reviews, see Annex 1 of this
document.

11.3. Penetration Tests

Penetration tests are aggressive security tests whereby the tester simulates
the actions of a potential attacker in attempting to cause the system to fail,
usually with the objective either of gaining unauthorised access or of causing
a denial of service. They are also commonly referred to as ethical hacking.

For the purposes of this document, penetration tests are considered to be any
tests where the actions of a potential attacker are simulated in identifying or
attempting to exploit vulnerabilities in an information system. This includes
vulnerability scans, which are less aggressive than full penetration tests.

Penetration tests should be performed on systems as defined in section 8.2.3
earlier in this document, and may also be performed during the lifetime of a
system in production.

Whenever a penetration test is performed which could affect other
Commission systems19, the following rules must be followed:

 The test must be documented in a formal convention which must be
signed for authorisation before the test by the System Owner, the
company performing the tests20, DIGIT and the Security Directorate.
The convention must include:

o The purpose, scope and nature of the tests.

o A detailed test plan and methodology.

o The IP addresses of all target machines, as well as those of
the source machines used for the tests. These IP addresses
must be carefully checked by the System Owner and DIGIT.

o The timeframe during which the tests will be performed.

o A non-disclosure agreement signed by the tester.

19 For example, if the tester has to pass through other parts of the Commission network before reaching the
system to be tested. If the test takes place on an isolated system with no connection to the
Commission's internal networks, then the rules should be considered as guidance instead.

20 Penetration tests are normally performed by external security consultants.

Standard on Secure Systems Development Page 29 of 32

 The company performing the penetration tests must provide evidence
of its competence, and that of the personnel involved, to perform the
tests.

 Appropriate controls must be established around the test
environment.

 All penetration tests must be closely followed by an observer from
the Commission.

 Tests must not be performed on any systems or components outside
the documented scope.

 The results of the penetration test must be reported to the Security
Directorate and to DIGIT, together with a description of the remedial
actions taken or planned.

12. OUTSOURCED SOFTWARE DEVELOPMENT

Policy objective 7.3.3 – Outsourced Software Development – Outsourced
software development must be supervised and monitored and its deliverables
formally accepted before installation and usage.

12.1. General Rules

Information systems are often developed by third parties on behalf of the
Commission, and so the Commission may not always have direct control of
the software development process. In these cases, the rules in this section
must be followed.

Source code must always be available to the Commission. Consequently,
where software development is outsourced, the outsourcing contract must
contain provisions for the code ownership and intellectual property rights or
licensing arrangements, depending on the situation. If ownership of the code
remains outside the Commission, then the contract must include an escrow
arrangement.

The contractual agreement must specify the requirements for the quality and
security functionality of the code. This must include provisions for ensuring
the quality and accuracy of work done at the premises of the third party (for
example, the right to audit).

All externally developed software must be formally tested and accepted by
the system owner before it is installed on the production environment. All
externally developed software must be tested for malware before installation
on any EC environment.

Standard on Secure Systems Development Page 30 of 32

13. ROLES AND RESPONSIBILITIES

System Owner: responsible for reviewing and approving system development and
acquisition activities, and ensuring that they conform to the business and security
requirements.

Developers: responsible for following secure development procedures and being
aware of coding standards and security issues.

Project managers: responsible for ensuring that the security rules applying to the
different phases of the SDLC are followed.

IRM teams: responsible for operating systems housed within the Commission, and
for advising on technical aspects of software development and acquisition projects.

LISOs: responsible for advising on the security requirements for new and existing
systems, and representing security interests in software projects.

Testers: responsible for making sure that information systems conform to the
general and specific security requirements.

Procurement teams: responsible for ensuring that the specifications for systems to
be acquired include appropriate security requirements.

System providers: responsible for operating systems housed within the Commission,
and for advising on technical aspects of software development and acquisition
projects.

Security Directorate: provide guidance on all special cases on request from DGs.

14. REFERENCES

 - Commission Decision C(2006) 3602 of 16/8/2006

 - Implementing rules for Commission Decision C(2006) 3602 of 16.8.2006

 - Commission Decision 2001/844/EC, ECSC, Euratom

 - International standard ISO/IEC 27001 – Second edition 2005-06-15

 - International standard ISO/IEC 17799 – Second edition 2005-06-15

 - Common Criteria for Information Technology Security Evaluation part 3:
Security assurance components – v. 3.1 Revision 2

 - ITIL (Information Technology Infrastructure Library)

 - NIST SP 800-27 Rev A - Engineering Principles for Information Technology
Security (A Baseline for Achieving Security), Revision A

 - NIST SP 800-64 Security Considerations in the System Development Life Cycle

 - OWASP (Open Web Application Security Project) - http://www.owasp.org/

Standard on Secure Systems Development Page 31 of 32

15. RELATED DOCUMENTS

Note that standards marked (*) are in draft at the time of writing of this standard.

 - Standard on Access Control and Authentication (*)

 - Standard on Physical and Environmental Security

 - Standard on Cryptography and Public Key Infrastructure

 - Standard on Asset Management

 - Standard on Information Security Risk Management (*)

 - Standard on Business Continuity Management

 - Standard on Network Security (*)

16. ANNEX 1 – SUPPLEMENTARY INFORMATION FOR CODE REVIEWS

This annex contains additional information for guidance on code reviews. Detailed
information on how to perform the reviews is specific to each programming
environment and is outside the scope of this document.

Reviewing source code is a complex process and there are many potential
weaknesses. For example, when reviewing a source program, the following
categories should be considered for review:

 SQL injection

 Cross-site scripting

 Input/output data validation

 Authentication

 Authorisation

 Handling of sensitive data

 Password security

 Exception management

 Data access

 Cryptography

 Use of uncontrolled code (e.g. external libraries)

 Configuration

Standard on Secure Systems Development Page 32 of 32

 Threading

 Undocumented but accessible interfaces (backdoors)

All subsequent changes should be commented in the source code, and subsequent
reviews may then focus on the code that has been changed in the latest version.

The following are examples of objectives that can be set for this exercise:

 Make sure that all untrusted input to the component is passed to a validation
routine before it is used.

 Check error handling procedures to make sure that exceptions are caught
consistently and caught close to their source.

 Check calculations whose results are used for memory allocation or buffer
access for numeric overflow or underflow.

 Check cryptographic routines to make sure secrets are cleared quickly.

 Check for unauthorised functionality or backdoors

Code should be reviewed incrementally and iteratively and limited to small,
manageable pieces of code.

After each code review, the coding standards may need to be updated to reflect the
latest best practices of code review and programming standards, or to highlight
issues that appear repeatedly.

